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Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration
on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities
are different within control soil, STE, and the biomat and that microbes found in STE are not found in the
biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or
protection for subsequent groundwater interactions of STE.

On-site wastewater treatment systems serve approximately
22 million homes throughout the United States (39), resulting
in �15 billion liters of wastewater, typically treated in septic
tanks (Fig. 1A), being discharged into the environment daily
(8). Septic tank effluent (STE) is normally discharged into
subsurface trenches or beds (i.e., soil treatment units [STU])
(40), where many pathogenic bacteria, viruses, and nutrients
are removed, transformed, or destroyed.

Within the STU, a complex ecosystem referred to as a
biomat evolves over time at and near the soil infiltrative sur-
face in response to STE application (5, 6, 32). This region (1 to
2 cm in thickness) becomes dark in color and has high organic
matter accumulation, high water content, and high microbial
densities. The biomat may be important from a purification
perspective (42); however, excessive soil pore clogging can be
detrimental to long-term hydraulic functioning.

Biomat formation and potential soil clogging appear to be
dependent on several factors: wastewater composition and
loading rate (18, 31, 32, 38), soil characteristics (23), microor-
ganisms (2, 11, 14, 24, 29, 33), temperature (17), and waste-
water application method (17). Although it is believed that
microorganisms are involved, research examining the micro-
bial community of the biomat is limited and until recently has
focused only on using plating techniques to determine bacte-
rial numbers (27, 29). Few researchers have attempted to char-
acterize the microbial community found in the biomat (3, 29,
41). In this study, traditional culturing techniques and a mo-
lecular approach (see “Methods” in the supplemental mate-
rial) were used to explore the diversity of microbes found in
domestic STE and the biomat that developed in the STU in a
sandy loam soil.

The biomat that developed within an Ascalon sandy loam
soil as a result of STE infiltration over a period of 30 months
was characterized using 16S rRNA gene sequence analysis and
culturing techniques (37). The microbial communities were
analyzed by using STE and biomat samples from two different
pilot-scale infiltration units for STE; one (MP10) had an open

architecture above the soil infiltrative surface (Fig. 1B), and
one (MP9) had gravel aggregate sitting on the soil infiltrative
surface (Fig. 1C). For use as a negative control, samples of
sandy loam soil were also collected from an infiltration unit at
the same site that received clean tap water and had an open
architecture. Biomat samples were taken at two depth inter-
vals, 0.0 to 0.5 cm and 0.5 to 1.0 cm from test units MP10 and
MP9, and the control sample was taken from 0.0 to 0.5 cm. At
the time of sampling, the three infiltration units had received
STE or tap water for 30 months.

A total of 447 bacterial 16S rRNA gene sequences were
generated from samples of the STE and the biomat (two
STE units and a tap water unit). This number likely repre-
sents a great undersampling of these environments; how-
ever, these sequences are sufficient to provide insight into
the microbial community phylotype composition. Although
“universal” (i.e., all three phylogenetic domains amplified)
PCR primers 515F and 1391R (19) were used, only organ-
isms from the bacterial domain were detected. As in a
previous study of a biomat (3) and other studies of soil
microbial communities (9, 28), Proteobacteria sequences
dominated the biomat samples, but Bacteroidetes and
Acidobacteria sequences were also found in significant abun-
dance (Fig. 2). The control community was comprised mainly
of sequences from Proteobacteria, Acidobacteria, and Actino-
bacteria, with a distribution similar to that of the biomat. How-
ever, only 31% of sequences at the family level were shared
between the 0.0- to 0.5-cm-depth samples of each biomat and
the control. Furthermore, 95% of the operational taxonomic
units (OTUs) found in the control sample were not found in
any other sample analyzed in this study.

The lack of shared sequences suggests that the nutrient-rich
STE fosters the growth of a different soil microbial community.
The composition of the effluent applied (clean water versus
STE) appears to lead to distinct microbial communities, based
on the relatively low percentage of shared OTUs. Additionally,
scanning electron micrographs of both biomat and control soil
samples were strikingly different, supporting the differences
observed by molecular comparative methods (see Fig. S1 in the
supplemental material).

The STE library was also dominated by proteobacteria
(81%), but the class distribution differed considerably from
both the control and biomat (see Fig. S2 in the supplemental
material). Epsilonproteobacteria (from the genera Sulfuro-
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spirillum, Arcobacter, and Sulfurimonas) species represented
the dominant subphyla in the STE sample but were absent
from all other samples. None of the OTUs found in STE
were found in the biomat samples, suggesting that the mi-

crobial community of the biomat originates in the soil rather
than from the influx of organisms entering the soil in STE.
This also may indicate limited survival or the possibility that
they are outcompeted by indigenous soil microbes. Species
of both the Sulfurospirillum and Sulfurimonas genera have
also been found in aquatic environments (13, 16) and con-
taminated sediments (22). Sequences of Arcobacter spp.,
aerotolerant gram-negative spiral-shaped bacteria, were the
most dominant found in STE. Arcobacter spp. have been
found in mangrove sediments (21) and activated sludge (34)
and have been associated with human and animal diarrhea
(1, 20, 36). The lack of Arcobacter spp. in any of the biomat
samples indicates a rapid die-off or predation at the soil
infiltrative surface or the possibility that they are vastly
outnumbered in this environment and were not detected by
the sequencing performed.

There was far less overall phylogenetic diversity in STE than
in the biomat samples (see Table S1 in the supplemental ma-
terial). The phylum distribution in the STE is similar to that of
the human gut, which contains some of the highest cell densi-
ties of any ecosystem (43); however, diversity at the phylum
level is among the lowest (15). Studies have shown that the
human gut and feces are dominated by Bacteroidetes (30%)
and Firmicutes (30%) species (4, 10). The lack of sequences
grouping with Firmicutes spp. in this study suggests that they
may not survive the septic tank environment. Not surprisingly,
Escherichia coli sequences were not detected in this study, as
these bacteria represent less than 0.1% of the species found in
the colon (10, 35).

The amount of fecal coliforms and E. coli bacteria was
reduced by a minimum of 90% and 85%, respectively, from
the STE to the biomat. Similar to results of previous studies
(12, 25, 26, 30), culturable heterotrophic bacteria, fecal co-
liforms, and E. coli bacteria decreased with the increase in
depth (1 to 10 cm) in both of the STE test units. The number
of heterotrophic bacteria was 3 to 5 orders of magnitude
greater in all samples than counts for fecal coliforms and E.
coli. At all depths, the number of fecal coliforms and E. coli
were greater in test unit MP10 than in MP9; this may be due
in part to differences between open versus gravel-laden in-
filtration surfaces, with the gravel architecture of MP9 being
more conducive to the formation of a water-treating biomat.

Further analysis may determine the roles that microbes
play in the treatment of organic and inorganic pollutants in
the biomat. Ultimately, understanding the microbial com-
munity will allow engineers to implement on-site systems
that control the rate of biomat formation and thus keep
clogging and subsequent failure to a minimum. This im-
proved design and operation would help to protect the un-
derlying groundwater.

Nucleotide sequence accession numbers. The sequences de-
termined in this study have been submitted to the GenBank
database and assigned the accession numbers EU403601 to
EU404047. Clone names designate the community (MP9A,
test unit 9, 0.5 cm; MP9B, test unit 9, 1.0 cm; MP10A, test unit
10, 0.5 cm; MP10B, test unit 10, 1.0 cm; STEU-STE, CTRL-
negative control test unit, 0.5 cm; plus the clone number [e.g.,
MP9A1]).

FIG. 1. Shown are typical on-site wastewater system components (A), a
chamber system with an open infiltrative architecture (B), and a stone-and-
pipe system with a gravel-laden infiltrative surface architecture (C). (Adapted
with permission from Infiltrator Systems, Inc.)
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